SIRIUS

SAMPLER Use with Your Students!

GRADE 8 SCIENCE STAAR ${ }^{\text {® }}$ Preparation and Practice

STAAR GRADE 8 SCIENCE REFERENCE MATERIALS

FORMULAS

```
Density \(=\frac{\text { mass }}{\text { volume }}\)
\(D=\frac{m}{V}\)
```

Average speed $=\frac{\text { total distance }}{\text { total time }}$
$s=\frac{d}{t}$

Net force $=$ (mass) $($ acceleration $)$
$F=m a$

SIRIUS

GRADE 8 SCIENCE STAAR ${ }^{\text { }}$ Preparation and Practice

Streamlined TEKS
2018 Edition
SAMPLER
Use with Your
Students!

Copyright © 2018 by Sirius Education Solutions LLC. All rights reserved. No part of this work may be reproduced or distributed in any form or by any means, electronic, mechanical, photocopying, scanning, recording, or stored in a database or retrieval system, without the prior written permission of the publisher.

STAAR ${ }^{\circledR}$ is a registered trademark of the Texas Education Agency. The Texas Education Agency does not endorse this program or its content. Sirius Education Solutions LLC is not affiliated with the Texas Education Agency or the State of Texas.

STAAR ${ }^{\circledR}$ test questions copyright © by the Texas Education Agency. All rights reserved.
Printed in Texas.
ISBN: 978-1-943008-20-9

Possession of this publication in print format does not entitle users to convert this publication, or any portion of it, into electronic format.

Thank you for respecting the copyright and supporting the hard work involved in creating this product.

Contents in Brief

Included in Sampler

Table of Contents and TEKS Correlations. iv
Welcome Letter ix
Using This Book for STAAR Success x
Strategies for Solving STAAR Problems xiii
Answering Griddable Questions. xvi
Student Progress Monitoring Chart xviii
Unit 1 Matter and Energy 1
1.1 Describing Matter (8.5D) 6
1.2 Physical Properties of Matter ($6.6 A, 6.6 B$) 14
1.3 Structure of Atoms (8.5A) 22
1.4 Chemical Properties of Matter (8.5B, 8.5C) 30
1.5 Chemical Reactions (7.6A, 8.5E) 40
Unit 2 Force, Motion, and Energy 57
2.1 Energy (6.8A, 6.9C) 62
2.2 Motion (6.8C, 8.6B, 6.8D) 69
2.3 Force and Newton's Laws ($8.6 C, 8.6 A$) 78
1-2 CUMULATIVE REVIEW 97
Unit 3 Earth and Space 101
3.1 The Universe ($8.8 \mathrm{C}, 8.8 \mathrm{~A}, 8.8 \mathrm{~B}$). 108
3.2 Earth, Sun, and Moon (6.11B, 8.7A, 8.7B, 8.7C). 117
3.3 Formation of Earth's Surface (8.9A, 8.9B) 129
3.4 Earth's Landforms (7.8C, 8.9C) 139
3.5 Earth's Atmosphere and Oceans (8.10A, 8.10B, 8.10C) 150
1-3 CUMULATIVE REVIEW 168
Unit 4 Organisms and Environments 173
4.1 Classification of Organisms (6.12D, 7.11A). 181
4.2 Variation and Heredity (7.14C, 7.14B, 7.11C) 190
4.3 Structure and Function of Cells (7.12F, 7.12D) 199
4.4 Human Body Systems (7.12B) 206
4.5 Relationships Between Living and Nonliving Things (8.11A, 7.5B) 212
4.6 Change and Stability in Ecosystems (7.10C, 7.10B) 224
4.7 Effects of Environmental Change (8.11B, 8.11C) 231
1-4 CUMULATIVE REVIEW 248
English/Spanish Glossary 254
Student Answer Sheets 275

unit Force, Motion, and Energy

Vocabulary Review and Preview 58
Diagnostic Test 59
2.1 Energy 62
Kinetic Energy and Potential Energy (6.8A) Energy Transformations (6.9C)
2.2 Motion 69
Speed (6.8C)
Velocity and Acceleration (8.6B)
Graphing Motion (6.8D)
2.3 Force and Newton's Laws 78
Newton's Laws of Motion (8.6C) How Forces Affect Motion (8.6A)
Study Guide and Review 91
Active Review 93
Post Test 94
1-2 Cumulative Review 97

Earth and Space

Vocabulary Review and Preview102
Diagnostic Test 103
3.1 The Universe 108
The Electromagnetic Spectrum (8.8C) Stars and Galaxies (8.8A, 8.8B)
3.2 Earth, Sun, and Moon 117
Our Solar System (6.11B)
Earth's Motions (8.7A)
The Lunar Cycle (8.7B)
Ocean Tides (8.7C)
3.3 Formation of Earth's Surface 129
Plate Tectonics (8.9A)
Formation of Crustal Features (8.9B)
3.4 Earth's Landforms 139
Groundwater and Surface Water (7.8C)
Weathering and Erosion (8.9C)
3.5 Earth's Atmosphere and Oceans 150Winds and Ocean Currents (8.10A)Weather (8.10B)Oceans and Weather Systems (8.10C)
Study Guide \& Review 159
Active Review 161
Post Test 162
1-3 Cumulative Review 168

Organisms and Environments

Vocabulary Review and Preview . 174 175
4.1 Classification of Organisms 181Classifying Living Things (6.12D)Identifying Organisms (7.11A)
4.2 Variation and Heredity 190
Heredity (7.14C)
Reproduction (7.14B)Changes in Genetic Traits (7.11C)
4.3 Structure and Function of Cells 199
Cell Theory (7.12F)Cell Structures (7.12D)
4.4 Human Body Systems 206
Body Parts Work Together (7.12B)
4.5 Relationships Between Living and Nonliving Things 212
Resources Needed for Survival (8.11A)
Energy Flow in Ecosystems (7.5B)
4.6 Change and Stability in Ecosystems 224
Ecological Succession (7.10C)
Biodiversity and Sustainability of Ecosystems (7.10B)
4.7 Effects of Environmental Change 231
Effects of Environmental Change on Populations (8.11B) Humans and Ecosystems (8.11C)
Study Guide \& Review 239
Active Review 242
Post Test 243
1-4 Cumulative Review 248
English/Spanish Glossary 254
Student Answer Sheets 275
STAAR Reference Materials inside front \& back cover

TEKS Correlations

Included in Sampler

The 14 Readiness TEKS are highlighted in these tables and comprise $60-65 \%$ of the STAAR test questions.

Reporting Category 1: Matter and Energy		
TEKS	Lesson	Page
8.5A	1.3	22
8.5B	1.4	30
8.5C	1.4	34
8.5D	1.1	6,9
8.5 E	1.5	43
$7.5 \mathrm{~B}^{\star}$	4.5	217
7.6 A	1.5	40
6.6 A	1.2	14
6.6 B	1.2	17

Reporting Category 2: Force, Motion, and Energy		
TEKS	Lesson	Page
8.6A	2.3	84
8.6 B	2.2	71
8.6C	2.3	78
6.8 A	2.1	62
6.8 C	2.2	69
6.8 D	2.2	72
6.9 C	2.1	64

Reporting Category 3: Earth and Space		
TEKS	Lesson	Page
8.7 A	3.2	119
8.7 B	3.2	122
8.7 C	3.2	123
8.8 A	3.1	110
8.8 B	3.1	110
8.8 C	3.1	108
8.9 A	3.3	129
8.9 B	3.3	134
8.9 C	3.4	143
8.10 A	3.5	150
8.10 B	3.5	153
8.10 C	3.5	155
7.8 C	3.4	139
6.11 B	3.2	118

Reporting Category 4: Organisms and Environments		
TEKS	Lesson	Page
8.11A	4.5	212
8.11B	4.7	231
8.11C	4.7	234
7.10 B	4.6	227
7.10 C	4.6	224
7.11 A	4.1	185
7.11 C	4.2	194
7.12 B	4.4	206
7.12 D	4.3	201
7.12 F	4.3	199
7.14 B	4.2	192
7.14 C	4.2	190
6.12D	4.1	181

[^0]Dear Students,
The STAAR Grade 8 Science assessment measures your knowledge of the Grades 6-8 science standards (TEKS). STAAR tests are not designed to measure many important qualities of character and intelligence - as this cartoon shows. But performing well on the STAAR tests is important,
so you want to do all you can to succeed on them. That's where this workbook comes in!

What are some other important qualities of character and intelligence missing in STAAR tests?

This workbook was designed to help you prepare for the STAAR Grade 8 Science test by

- reviewing the skills and concepts you need to answer STAAR test questions, and
- providing practice questions that are similar to those you will answer on the actual STAAR test.

Practicing Smart Is the Secret to STAAR Success

There is a secret to success on the STAAR tests-practice, practice, and more practice. This is good news, because you are in control of how much effort you put into practicing. But not all practice is the same... you need to practice smart.

First, practice with test questions that are very similar to the actual STAAR test. That's easy because this workbook is full of them! Next, focus on your weaknesses - spend extra time on questions you have trouble with. Think of it like this: if your basketball shot needs improvement, you don't practice dribbling. Instead, you practice shooting.

Focusing on your weaknesses also means carefully analyzing each test question you get wrong.
Why did you get it wrong? Why is another answer correct? You can learn more from test questions you get wrong, so don't be afraid of making mistakes. If your basketball shot is off, you identify what you are doing wrong (too far left), and correct it with your next shot (aim further right).
When you practice, give each question your full attention. Do not take a break until after you answer the question. Your attention is like a muscle that you can build by using it, one practice test question at a time. Do you believe unfocused, sloppy practice of your basketball shot will help you perform during a big game? No! Your attention is your greatest power. You develop it with practice.

Preparing for the STAAR test can actually be a fun challenge. And when you practice smart, you are building life skills while you prepare for the STAAR test!

Your partners in STAAR success,
The Sirius Education Team

Using This Book for STAAR Success

This interactive workbook includes instruction and practice in all tested TEKS (grades 6-8). It is easily adapted for different needs and includes a 3-step approach to efficiently prioritize and individualize remediation when preparation time is limited.

STEP 1 Identify Your Needs—Unit Diagnostic Tests

Use each of the 4 Unit Diagnostic Tests to identify what you know and what you need to review. Record your results in the Student Progress Monitoring Chart. (All tested TEKS are included.)

STEP 2 Focus Your Remediation-Instruction and Practice

Use your Diagnostic Test results to focus TEKS instruction and STAAR practice to meet your unique needs.

STEP 3 Monitor Your Progress-Unit Post Tests

Use each Unit Post Test to monitor your progress and to identify additional lessons for review. The Post Test questions cover the same TEKS in the same order as the Diagnostic Test.

20 Lessons with TEKS Instruction and STAAR Practice

TEKS Instruction—Engaging Interactive Learning

Concise and student-friendly instruction reviews each tested TEKS. Students actively participate in learning with interactive and scaffolded Your Turn questions.

STAAR Practice-Abundant and Systematic Practice

Each lesson includes authentic STAAR practice with test-taking tips and and practice filling in grids.

Additional Resources for STAAR Success

Unit Opener-Vocabulary

Review prerequisite vocabulary and preview new key terms with an engaging activity.

Unit Study Guide \& Review

Checklists organize the lesson content for quick review of Key Concepts and Key Terms.

Cumulative STAAR Review

Mixed practice provides spaced review to help students remember what they learn.

English/Spanish Glossary

English/Spanish glossary has definitions for over 225 terms.

Student Progress Monitoring Chart

Use the Diagnostic Tests to identify topics you need to review. Chart your progress using the steps below.
(1) Diagnostic Mark a $\sqrt{ }$ in the box under each question that you answered correctly. Find the total correct.
(2) Completed For each unchecked question in (1), circle the Lesson number. After you study the lesson, mark a $\boldsymbol{\checkmark}$ in the box for Completed.
(3) Post Test Mark a \checkmark in the box for each question that you answered correctly. Find the total correct. (The Post Test questions are in the exact same order as the Diagnostic Test.)

Unit 1 Matter and Energy

In this unit, you will learn about matter and energy. Matter is the stuff that makes up all objects and materials. Energy is the ability to do work or cause changes in matter. Matter can have different characteristics and ways of behaving. When matter gains or loses energy or comes into contact with other kinds of matter, its characteristics can change.

A firefighter battles flames so hot they change the density of the surrounding air. When a fuel burns in air, it is chemically changed and releases energy in the form of bright flames and a scorching heat.

Get Ready

Name three materials that you have come across today-one that is a solid, one that is a liquid, and one that is a gas.

Vocabulary Review

Match the term with the corresponding definition.

chemistry	liquid	solid
gas	mass	volume

1. \qquad measure of the amount of matter in an object
2. \qquad measure of the amount of space an object takes up
3. \qquad study of the interactions of matter and energy
4. \qquad state of matter that has indefinite shape and volume
5. \qquad state of matter that has definite shape and volume
6. \qquad state of matter that has definite volume and indefinite shape

Vocabulary Preview

Use the words shown to complete the graphic organizers.

atomic number	atomic mass	electron
neutron	proton	

Structure of Atoms

8.5A

Describe the structure of atoms, including the masses, electrical charges, and locations, of protons and neutrons in the nucleus and electrons in the electron cloud. (Readiness)

What It Means You will learn about the parts that make up an atom—how much mass each part has, what kind of electrical charge it has, and where it is found within the atom.

Get Ready

Atoms are the smallest particles that have the properties of an element, but they are made up of even smaller particles. How would you expect the masses of these particles to compare to the mass of an atom?

Parts of an Atom

You have learned that an atom is the smallest particle of an element that still has the properties of that element. So, what would you find if you could divide an atom? The resulting parts would no longer represent that element, because atoms are not solid balls of material. Atoms are made up of even tinier particles called subatomic particles. All atoms contain different numbers and arrangements of the same types of particles.

Locations of Subatomic Particles

Three important subatomic particles are protons, neutrons, and electrons. These particles have different properties, which will be described on the next page. They are also found at different places within the atom.

An atom has two main parts: a nucleus and an electron cloud.

- Protons and neutrons make up the atom's nucleus. The nucleus is a dense body at the very center of the atom.
- The electrons of an atom are outside of the nucleus in a region called the electron cloud.

The electron cloud is much bigger than the nucleus. It takes up most of the atom's space. In fact, if the nucleus were the size of a green pea, the electron cloud would be as wide as a football field.

Fun Fact

78% of the air we breathe is nitrogen, and only 21% is oxygen.

Modeling the Atom

The drawing shows a model of an atom of nitrogen. It has a nucleus that consists of seven protons and seven neutrons. The electron cloud surrounding the nucleus contains seven electrons.

Your Turn D

1. The nucleus of an atom is much larger than | smaller than the electron cloud.

Properties of Subatomic Particles

Subatomic particles differ in mass, or how much matter they contain. Protons and neutrons have about the same mass-about one atomic mass unit ($\mathbf{a m u}$), which is equal to about $1.7 \times 10^{-27} \mathrm{~kg}$. Electrons, on the other hand, are much less massive. Compared to protons and neutrons, electrons barely have any mass at all. As a result, the nucleus of an atom contains almost all of the atom's mass. The atom as a whole is mostly empty space!

Another way subatomic particles differ is in their electrical charge. Electrical charge is a property of matter that can be either positive or negative. Protons have a positive charge. Electrons have a negative charge. Neutrons are neutral, which means they do not have a charge. Because the nucleus of an atom consists of only protons and neutrons, it has an overall positive charge. The chart below summarizes three properties of subatomic particles.

Properties of Subatomic Particles			
Subatomic Particle	Location	Mass (amu)	Electrical Charge
Proton	nucleus	1	+1
Electron	electron cloud	$\frac{1}{1,836}$	-1
Neutron	nucleus	1	0 (no charge)

The electrical charges of protons and electrons are important because they help hold an atom together. Objects that have opposite electrical charges attract one another. This attraction pulls electrons (which are negatively charged) toward the nucleus of an atom (which is positively charged). This means that even though electrons are constantly moving around the nucleus, they do not fly off.

Your Turn

2. Complete the table to show the number of protons, neutrons, and electrons for each atom.

$$
\text { KEY: + is proton; } \mathbf{0} \text { is neutron; - is electron }
$$

	Lithium	Beryllium	Carbon	Oxygen
Protons		4		
Neutrons	4			
Electrons			6	

3. Compare the number of protons to the number of electrons in each atom. What pattern do you see? \qquad

Diagnostic Test Item

8.5A, 8.3B

4 A model of an atom is shown below.

Which statement best describes the particles that make up the part labeled X in the model?

F They all have no charge.
G They all have a positive charge.
H Some have a positive charge and some have no charge.
J Some have a positive charge and some have a negative charge.

Explanation

F The nucleus does contain neutrons, which have no charge, but it also contains protons, which have a positive charge.
G The nucleus does contain protons, which have a positive charge, but it also contains neutrons, which have no charge.
H Correct! The nucleus of an atom is made up of protons, which have a positive charge, and neutrons, which have no charge.
J The nucleus does contain protons. However, there are no electrons in the nucleus, so it does not contain particles that have a negative charge.

Numbers of Protons, Neutrons, and Electrons

Protons

The properties of elements differ because of differences in their atomic structures. One important difference is the number of protons they have. In fact, the number of protons in an atom tells you what element it is. Every element has a unique number of protons. This number is called the element's atomic number.

Electrons

Although atoms are made up of charged particles, many atoms have no overall electric charge. For example, the fluorine atom shown below has 9 protons and 9 electrons. The +9 charge of the protons and the -9 charge of the electrons cancel out to give a total charge of 0 . This makes the atom electrically neutral. Every neutral atom has the same number of electrons as protons.

Atoms sometimes gain or lose electrons when they interact with other substances. When they do so, they become charged particles known as ions. An atom that has lost one or more electrons is a positive ion, while an atom that has extra electrons is a negative ion.

Did You Know?
Hydrogen is the most abundant element in the universe. It is also the only element whose atoms do not have any neutrons.

Neutrons

While the number of protons and electrons is the same in every neutral atom of a particular element, this is not true for neutrons. Different atoms of the same element can have different numbers of neutrons.

The mass number of an atom is the sum of the number of protons and neutrons it contains. Because protons and neutrons each have a mass of about one atomic mass unit, while electrons have very little mass, the mass number of an atom is very close to the atom's total mass in atomic mass units.

If you know a neutral atom's mass number and its atomic number, you can determine the number of protons, neutrons, and electrons it has. This is summarized in the box below.
number of protons = atomic number
number of electrons = atomic number
number of neutrons $=$ mass number - atomic number

Your Turn \quad -

4. Increasing the number of neutrons in an atom increases its atomic number | mass number | electrical charge .
5. Complete the table for a neutral atom of each element.

	Iridium, Ir	Gold, Au	Calcium, Ca
Atomic number	77	79	20
Mass number	192	197	
Number of protons		79	
Number of neutrons	115		20
Number of electrons			

Using the Periodic Table

Inside the back cover of this book, as well as in the Reference Materials for the Science STAAR test, you'll find a chart called the periodic table. It arranges all the elements in order of their atomic numbers. Take a look at the information inside one box in the table.

Each box in the periodic table represents an element. In the center of the box is the element's chemical symbol, and at the bottom is the element's name. There are also two numbers in the box. At the top is the element's atomic number. Below the chemical symbol is the element's atomic mass.

The atomic mass shown for each element is the average mass of one atom of that element. It is similar to an atom's mass number, but not quite the same. You may notice that most of the atomic masses shown are decimals, rather than whole numbers. That is because each one is a weighted average of the masses of all the atoms of an element.

For example, the element boron, B, has an atomic number of 5. This means every neutral atom of boron has 5 protons and 5 electrons. However, not all boron atoms have the same number of neutrons. Some have 5 neutrons, for a total mass of $5+5=10 \mathrm{amu}$. Others have 6 neutrons, for a total mass of $5+6=11 \mathrm{amu}$. It turns out that in a sample of boron, there are about four times as many of the heavier boron atoms as the lighter boron atoms. Averaging the mass of the two kinds of boron atoms gives the atomic mass of 10.812 listed in the periodic table.

Your Turn

6. The numbers 208 and 207.2 both relate to the mass of an atom of lead (Pb). Complete the statements to explain how you know which one is the mass number and which one is the average atomic mass.

The whole number, \qquad , is the \qquad
The decimal, \qquad , is the \qquad

Read each question carefully and choose the best answer.

1 The drawing below shows a model of an atom.

Which object in the diagram has a negative charge?
A Particle A
C Particle C
B Particle B
D Particle D

2 Which statement best describes a proton?
(8.5A)

F Its mass is similar to that of an electron, but it has a positive charge.
G Its mass is similar to that of an electron, but it has a negative charge.
\mathbf{H} Its mass is similar to that of a neutron, but it has a positive charge.
J Its mass is similar to that of a neutron, but it has no charge.

3 A student made the flash card shown below for a review game.

Subatomic Particles in an Atom
Protons: 53
Neutrons: 74
Electrons: 53
Sketch an atom next to the chart. Show where each subatomic particle is located and identify its electric charge.

Which number describes the electrical charge of this atom's nucleus?
A -74
B -53
C +21
D +53

4 Which statement describes a similarity between electrons and protons?
F They have the same mass.
G Both are found in the nucleus of an atom.
H Both have an electrical charge.
J Both are found in the electron cloud.

5 Which statement about the masses of subatomic particles is true?
A Electrons and neutrons have similar masses.
B Neutrons and protons have similar masses.
C Electrons, protons, and neutrons all have similar masses.
D Electrons, protons, and neutrons all have very different masses.

6 How many protons, neutrons, and electrons are in a neutral atom of radium, Ra, with a mass number of 226 ?

F 88 protons, 138 neutrons, and 88 electrons

Use the periodic table to find the atomic number of radium.

7 What is the difference between the number of neutrons in an atom of iridium, Ir, with a mass number of 193, and the number of neutrons in an atom of plutonium, Pu , with a mass number of 244 ?
(8.5A, 8.2E)

Record your answer and fill in the bubbles. Be sure to use the correct place value.

(0)	(0)	(0)	(0)		(0)	(0)
(1)	(1)	(1)	(1)		(1)	(1)
(2)	(2)	(2)	(2)		(2)	(2)
(3)	(3)	(3)	(3)		(3)	(3)
(4)	(4)	(4)	(4)		(4)	(4)
(5)	(5)	(5)	(5)		(5)	(5)
(6)	(6)	(6)	(6)		(6)	(6)
(7)	(7)	(7)	(7)		(7)	(7)
(8)	(8)	(8)	(8)		(8)	(8)
(9)	(9)	(9)	9		(9)	(9)

Study Guide \& Review

Check (\checkmark) the concepts you know. Place a star (\star) next to the key terms you know.

1.1 Describing Matter

Key Concepts

Key Terms

Elements and compounds are both types of pure substances.They differ in whether they can be broken down into a different kind of matter.Elements are made up of only one kind of atom.Compounds are made up of atoms of two or more elements.Chemical symbols represent each of the elements in the periodic tableScientists use chemical formulas to name substances and show their chemical makeup.Subscripts identify how many atoms of each type of element are in the most basic unit of a compound.

(1.2) Physical Properties of Matter

Key Concepts

Scientists classify elements into three classes based on physical properties: metals, metalloids, and nonmetals.Metals are shiny, malleable, and conduct electricity.Nonmetals tend to be gases, liquids, or dull, crumbly solids that do not conduct electricity.Metalloids can have properties of both metals and nonmetals.Density is the mass of a sample of matter divided by its volume.Because pure substances often have unique densities, this property can be used to identify many substances.
(1.3) Structure of Atoms

Key Concepts
All matter is made up of particles called atoms, which are made up of subatomic particles. Each atom consists of a small, dense nucleus surrounded by an electron cloudThe nucleus of an atom is made up of protons, which are subatomic particles with a positive electrical charge, and neutrons, which have no charge.
6.6A, 6.6B

Key Terms

conductivity density
luster
malleability metal metalloid nonmetal physical property
Key Concepts
\square Electrons, which have a negative charge, are found in the
electron cloud.
\square The atomic number of an element is the number of protons in an
atom of that element. In a neutral atom, the number of electrons
is equal to the number of protons.
\square The mass number of an atom is the sum of the number of
protons and the number of neutrons.

Key Terms
mass number neutral neutron nucleus proton subatomic particle

(14) Chemical Properties of Matter

8.5B, 8.5C

Key Concepts

The number of protons in the nucleus of an atom (the atomic number) identifies which element it is.Valence electrons are the electrons in the outermost energy level of an atom. The number of valence electrons determines the chemical properties of an element, including its reactivity.Scientists arrange the elements in the periodic table by increasing atomic number.The rows of the periodic table are called periods, while the columns are called groups.Period number identifies the number of energy levels an element's electrons occupy.Group number helps identify the number of valence electrons an element has. Elements in a group have similar properties.(1) Chemical Reactions

Key Concepts

A physical change affects the physical properties of a substance without changing its identity. Changes in size or shape, changes of state, mixing, and separating are physical changes.A chemical change or chemical reaction is a process in which one or more substances change to form one or more new substances with different chemical makeups.Evidence of a chemical reaction includes a change in properties, formation of a new material, or a change in energy.Scientists use chemical equations to describe how reactants undergo change to form products in a chemical reaction.According to the law of conservation of mass, matter cannot be created or destroyed. This means that the reactants have the same mass as the products and are made up of the same numbers and types of atoms.

Key Terms

chemical change chemical equation chemical reaction coefficient law of conservation of mass
physical change product
reactant

Teacher's Edition Sampler

Using This Teacher's Edition

This workbook was created to support teachers in helping students succeed on the STAAR Grade 8 Science exam. It provides comprehensive and systematic instruction and practice for all 43 tested content TEKS from Grades 6, 7, and 8.

The workbook is organized into four units that align with the four Reporting Categories. Each unit begins with a Diagnostic Test that can serve as a baseline or to identify students' needs, followed by Lessons with ample STAAR Practice, and finally a Post Test to monitor progress. (The Post Test questions are in the exact same order as the Diagnostic Test and include all tested TEKS.)

STAAR Practice Support for Teachers

This workbook contains over 225 STAAR test items that closely match released STAAR tests. About 50% of the items include a stimulus such as diagrams, tables, graphs, photos, etc. Each STAAR item includes a full solution to help teachers or tutors facilitate understanding.

Remind students to use the Reference Materials.
STAAR Practice 8.5B, 8.5C
Read each question carefully and choose the best answer.
1 Beryllium, Be , is a strong, lightweight metal. It is used as a component for satellites and spacecraft. Which statement correctly describes atoms of beryllium? (8.5B)

A Beryllium atoms have 4 protons.
B Beryllium atoms have 9 neutrons.
C Beryllium atoms have 6 electrons.
D Beryllium atoms have 4 valence electrons.

2 These models show an atom for each of two different elements.

Which difference between the atoms makes them different elements?
F The fluorine atom has 9 protons, and the sodium atom has 11 protons.
G The fluorine atom has 10 neutrons, and the sodium atom has 12 neutrons.
H The fluorine atom has 2 energy levels, and the sodium atom has 3 energy levels.
J The fluorine atom has 7 valence electrons, and the sodium atom has 1 valence electron.

3 Element X has an atomic number of 14. Element Y has an atomic number of 12. Which statement about Elements X and Y is NOT correct?
A Element X has 4 valence electrons.
B Element X has the same symbol as Element Y .
C Element Y has 2 valence electrons.
D Element Y is more reactive than Element X .

1.4 Chemical Properties of Matter
(14) STAAR Practice Guide

Answers and Explanations

Assignment Guide with a Difficult item

1 A is correct because the atomic number of beryllium is 4 , indicating that it has 4 protons.

2 F is correct because fluorine has atoms with 9 protons and the atomic number 9, and sodium has atoms with 11 protons and the atomic number 11. Neither an atom's number of neutrons nor its number of energy levels determines the identity of the element.

Full solutions at point of use

3 B is correct because Elements X and Y cannot have the same symbol. They have different atomic numbers, which means they have different numbers of protons, so they are different elements. Locating them on the periodic table reveals that Element X is silicon, with 4 valence electrons. Element Y is magnesium, which has 2 valence electrons, so it is more reactive.

onix Matter and Energy
 Reporting Category 1

The student will demonstrate an understanding of the properties of matter and energy and their interactions.
1.1 Describing Matter (8.5D)
1.2 Physical Properties of Matter (6.6A, 6.6B)
1.3 Structure of Atoms (8.5A)
1.4 Chemical Properties of Matter (8.5B, 8.5C)
1.5 Chemical Reactions (7.6A, 8.5E)

In this unit, you will learn about matter and energy. Matter is the stuff that makes up all objects and materials. Energy is the ability to do work or cause changes in matter. Matter can have different characteristics and ways of behaving. When matter gains or loses energy or comes into contact with other kinds of matter, its characteristics can change.

A firefighter battles flames so hot they change the density of the surrounding air. When a fuel burns in air, it is chemically changed and releases energy in the form of bright flames and a scorching heat.

Get Ready

Name three materials that you have come across today-one that is a solid, one that is a liquid, and one that is a gas.
I have come across solid copper in a penny, liquid water in the shower, and gaseous air that I am breathing.

Vocabulary Review

Match the term with the corresponding definition.

chemistry	liquid	solid
gas	mass	volume

mass measure of the amount of matter in an objec
2. Volume measure of the amount of space an object takes up
3. chemistry study of the interacions of mater and energy
4. gaS state of matter that has indefinite shape and volume
5. solid lid state of matter that has definite shape and volume
6. liquid state of matter that has definite volume and indefinite shape

Vocabulary Preview

Use the words shown to complete the graphic organizers

Structure of Atoms

8.5A Describe the structure of atoms, including the masses, electrical charges, and locations, of protons and neutrons in the nucleus and electrons in the and locations, of protons and
electron cloud. (Readiness)

What It Means You will learn about the parts that make up an atom—how much mass each part has, what kind of electrical charge it has, and where it is found within the atom

Get Ready

Atoms are the smallest particles that have the properties of an element, but they are made up of even smaller particles. How would you expect the masses of these particles to compare to the mass of an atom?
The combined mass of all of the particles that make up an atom is equal to the mass of the atom.

Parts of an Atom

You have learned that an atom is the smallest particle of an element that still has the properties of that element. So, what would you find if you could divide an atom? The resulting parts would no longer represent that element, because atoms are not solid balls of material. Atoms are made up of even tinier particles called subatomic particles. All atoms contain different numbers and arrangements of the same types of particles.

Locations of Subatomic Particles

Three important subatomic particles are protons, neutrons
and electrons. These particles have different properties, which will be described on the next page. They are also found at different places within the atom.
An atom has two main parts: a nucleus and an electron cloud.

- Protons and neutrons make up the atom's nucleus. The nucleus is a dense body at the very center of the atom.
- The electrons of an atom are outside of the nucleus in a region called the electron cloud.
The electron cloud is much bigger than the nucleus. It takes up most of the atom's space. In fact, if the nucleus were the size of a green pea, the electron cloud would be as wide as a football field.

Fun Fact

 78% of the air we breathe is nitrogen, and only 21% is oxygen.
Modeling the Atom

The drawing shows a model of an atom of nitrogen. It has a nucleus that consists of seven protons and seven neutrons. The electron cloud surrounding the nucleus contains seven electrons.

Your Turn

1. The nucleus of an atom is much larger than | smaller than the electron cloud.

Properties of Subatomic Particles

Subatomic particles differ in mass, or how much matter they contain. Protons and neutrons have about the same mass-about one atomic mass unit ($\mathbf{a m u}$), which is equal to about $1.7 \times 10^{-27} \mathrm{~kg}$. Electrons, on the other hand, are much less massive. Compared to protons and neutrons, electrons barely have any mass at all. As a result, the nucleus of an atom contains almost all of the atom's mass. The atom as a whole is mostly empty space! Another way subatomic particles differ is in their electrical charge. Electrical charge is a property of matter that can be either positive or negative. Protons have a positive charge. Electrons have a negative charge. Neutrons are neutral, which means they do not have a charge. Because the nucleus of an atom consists of only protons and neutrons, it has an overall positive charge. The chart below summarizes three properties of subatomic particles.

Properties of Subatomic Particles			
Subatomic Particle	Location	Mass (amu)	Electrical Charge
Proton	nucleus	1	+1
Electron	electron cloud	$\frac{1}{1,836}$	-1
Neutron	nucleus	1	0 (no charge)

Think On This
Objects with the same electrical charge repel one another So what keeps
protons together protons together in the nucleus? It ums force, called the strong nuclear fo that overcomes the electrical repulsion between protons.

Read each question carefully and choose the best answer.

1 The drawing below shows a model of an atom.

Which object in the diagram has a negative charge?
A Particle A
C Particle C
B Particle B

2 Which statement best describes a proton?

3 A student made the flash card shown below for a review game.

Subatomic Particles in an Atom

$$
\begin{aligned}
& \text { Protons: } 53 \\
& \text { Neutrons: } 74 \\
& \text { Electrons: } 53
\end{aligned}
$$ to the chart. Show where each subatomic particle is located and identify its ele

charge. charge.

Which number describes the electrical charge of this atom's nucleus?

A -74
B -53

C	+21
D	+53

1.3 STAAR Practice Guide

8.5A	$\mathbf{1 - 7}$
Difficult	$\mathbf{7}$

Answers and Explanations

1 C is correct because electrons, which are located in the electron cloud of an atom, have a negative charge.

2 H is correct because protons and neutrons have similar masses, but neutrons do not have a charge, while protons have a positive charge.

3 D is correct because the nucleus consists of neutrons and protons, and each proton has a charge of +1 .

To obtain a copy of the remaining answers to this Sampler, email:

Teachers@SiriusEducationSolutions.com

STAAR GRADE 8 SCIENCE REFERENCE MATERIALS

PERIODIC TABLE OF THE ELEMENTS

SAMPLER

GRADE 8 SCIENCE CONTENTS

Unit 1 Matter and Energy

1.1 Describing Matter
1.2 Physical Properties of Matter
1.3 Structure of Atoms
1.4 Chemical Properties of Matter
1.5 Chemical Reactions

Unit 2 Force, Motion, and Energy

2.1 Energy
2.2 Motion
2.3 Force and Newton's Laws

Unit 3 Earth and Space

3.1 The Universe
3.2 Earth, Sun, and Moon
3.3 Formation of Earth's Surface
3.4 Earth's Landforms
3.5 Earth's Atmosphere and Oceans

Unit 4 Organisms and Environments

4.1 Classification of Organisms
4.2 Variation and Heredity
4.3 Structure and Function of Cells
4.4 Human Body Systems
4.5 Relationships Between Living and Nonliving Things
4.6 Change and Stability in Ecosystems
4.7 Effects of Environmental Change

Visit SiriusEducationSolutions.com
for additional Grade 8 STAAR resources.

STAAR GRADE 8 SCIENCE STAAR Practice Tests Forms A \& B

Two distinct secure form tests that closely match the released STAAR test items and blueprint.

Practice Tests are sold in 10-packs: 10 Form A \& 10 Form B student booklets with bubble sheets, and 1 Teacher's Edition

[^0]: * 7.5B is taught in Unit 4, but belongs to Reporting Category 1.

